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Abstract. The scattered seismic waves of fractured porous rock are strongly affected by the wave-induced fluid pressure 11 

diffusion effects between the compliant fractures and the stiffer embedding background. To include these poroelastic effects 12 

in seismic modeling, we develop a numerical scheme for discrete distributed large-scale fractures embedded in fluid-saturated 13 

porous rock. Using Coates and Schoenberg’s local effective medium theory and Barbosa’s dynamic linear slip model 14 

characterized by complex-valued and frequency-dependent fracture compliances, we derive the effective viscoelastic 15 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The 16 

effective governing equations of the fractured porous rock are then characterized by the derived anisotropic, complex-valued, 17 

and frequency-dependent effective compliances. We numerically solved the effective governing equations by mixed-grid 18 

stencil frequency-domain finite-difference method. The good consistency between the scattered waves off a single horizontal 19 

fracture calculated using our proposed scheme and those calculated using the poroelastic linear slip model shows that our 20 

modeling scheme can properly include the FPD effects. We also find that for a P-point source, the amplitudes of the scattered 21 

waves from a single horizontal fracture are strongly affected by the fluid stiffening effects due to fluid pressure diffusion, while 22 

for an S-point source, the scattered waves are less sensitive to fluid pressure diffusion. In the case of the conjugate fracture 23 

system, the scattered waves from the bottom of the fractured reservoir and the reflected waves from the underlying formation 24 

are attenuated and dispersed by the FPD effects for both P- and S-point sources. The proposed numerical modeling scheme 25 

can also be used to improve migration quality and the estimation of fracture mechanical characteristics in inversion. 26 

1 Introduction 27 

Fluid saturated porous rock in the reservoir characterized by a heterogeneous internal structure consisting of a solid skeleton 28 

and interconnected fluid-filled voids, are often permeated by much more compliant and permeable fractures. Although the 29 

fractures typically occupy only a small volume, they tend to dominate the overall mechanical and hydraulic properties of the 30 
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reservoir (Liu et al., 2000; Gale et al., 2014). Thus, fracture detection, characterization and imaging are of great importance 31 

for reservoir prediction and production. Seismic waves are widely used for these purposes because their behaviors (amplitude, 32 

phase and anisotropy) are strongly affected by the fractures (Chapman, 2003; Gurevich, 2003; Brajanovski et al., 2005; 33 

Carcione et al., 2011; Rubino et al., 2014). Therefore, appropriate numerical modeling methods are required for the 34 

interpretation, migration and inversion of seismic data from porous media containing discrete distributed fractures. 35 

Biot’s poroelastic theory (Biot, 1956a; b) is the fundamental theory to describe elastic wave propagation in fluid porous media, 36 

including the dynamic interactions between rock and pore fluid. However, the original theory, assuming a macroscopically 37 

homogeneous porous media saturated by a single fluid phase, is fail to explain the measured velocity dispersion and attenuation 38 

of seismic waves (Nakagawa et al., 2007). In recent decades, many researchers found that if porous media contains mesoscale 39 

heterogeneity (ignored by Boit), a local fluid-pressure gradient will be induced by the passing wave at scale comparable to the 40 

wave-induced fluid pressure diffusion length (the wavelength of slow P-wave), causing significant velocity dispersion and 41 

velocity attenuation at seismic frequency band (White et al., 1975; Dutta and Odé, 1979; Johnson, 2001; and Müller et al. 2008; 42 

Norris, 1993; Gurevich et al., 1997; Gelinsky and Shapiro, 1997; Kudarova et al., 2016). Fractures embedded in homogeneous 43 

porous background are special heterogeneities, exhibiting strong mechanical contrasts with background. When seismic waves 44 

travel through fluid saturated fractured porous rocks, local fluid pressure gradients will be induced between the fractures and 45 

the background in response to the strong compressibility contrast. To return the equilibrium state, fluid pressure diffusion (FPD) 46 

occurs between the fractures and the embedding background, which in turn changes the fluid stiffening effect on the fractures 47 

and thus their mechanical compliances depending on frequency (Barbosa et al., 2016a, b).  48 

When fractures with apertures and lengths much smaller than the wavelengths are unified distributed in porous rock, the 49 

properties of fractured rock are homogeneous at macroscopic scale and can be described by a representative elementary volume 50 

(REV). Various effective medium theories are available for estimating the fracture-induced anisotropy, attenuation and 51 

dispersion behaviors (Hudson, 1981; Thomsen, 1995; Chapman, 2003; Brajanovski et al., 2005; Krzikalla et al. 2011; Galvin 52 

et al., 2015; Guo et al., 2017a; b). The discrete distributed large-scale fractures (the presence of spatial correlations of fractures), 53 

however, cannot be modeled by any above-mentioned effective medium theories originally for macroscopically uniformly 54 

distributed fractures. The seismic response of individual fracture is mostly assessed in the framework of the linear slip model 55 

(LSM) by modeling a fracture as a nonwelded interface across which the displacement tensors are assumed to be discontinuous 56 

while the stress tensors are continuous (Schoenberg, 1980). Various local numerical schemes have been developed for discrete 57 

distributed large-scale fractures. The most widely used scheme is local effective-medium schemes (Coates and Schoenberg, 58 

1995; Igel et al., 1997; Vlastos et al., 2003; Oelke, et al., 2013) that determine and incorporate the behavior of fracture-induced 59 

media within each spatial discretized cell. The advantage of using the local effective medium is that it requires no special 60 

treatment of the displacement discontinuity conditions on the fractures. An alternative scheme is the explicit interface scheme 61 

that directly treat the displacement discontinuity across each fracture (Zhang, 2005; Cui et al., 2018; Khokhlov, et al., 2021).  62 
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The common aspect of the aforementioned numerical modeling schemes is that they are all implemented in a purely elastic 63 

framework with real-valued compliances boundary and represent both the embedding background and factures as elastic solids, 64 

thus the impact of FPD effects on seismic scattering can’t be accounted for. A dynamic linear slip model incorporating FPD 65 

effects should be considered when implementing numerical modeling of seismic wave propagating in fluid saturated porous 66 

rocks containing discrete distributed large-scale fractures. Rubino et al. (2015) proposed a frequency-dependent complex-67 

valued normal compliance for regularly distributed planar fractures (a set of aligned fractures) with a separation much smaller 68 

than the prevailing seismic wavelength. Despite the ability of including the FPD across the fractures, the model is not suitable 69 

for modeling discrete distributed fractures. Nakagawa and Schoenberg (2007) developed an extended LSM for a single fracture 70 

in the context of poroelasticity. The proposed model representing both the background and the fracture as poroelastic media 71 

can appropriately incorporate the frequency related effects, but it will also result in a higher computational consuming and 72 

more memory requirements. In the context of viscoelasticity, Barbosa et al. (2016a) developed a viscoelastic linear slip model 73 

(VLSM) for an individual fracture with explicit complex-valued and frequency-dependent fracture compliances, to account 74 

for the impact of FPD on the fracture stiffness. That provides a viscoelasticity-based modeling algorithm for discrete distributed 75 

large-scale fractures with smaller computational costs and memory requirements than the poroelasticity based modeling. 76 

In this paper, we develop a viscoelastic numerical modeling scheme to simulate seismic wave propagation in fluid-saturated 77 

porous media containing discrete distributed large-scale fractures. To capture the FPD effects between the fractures and 78 

background, we use the local effective medium theory based on Barbosa’s VLSM to derive the effective anisotropic 79 

viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. The 80 

effective anisotropic viscoelastic governing equations of the fractured porous rock are then numerically solved using mixed-81 

grid stencil frequency-domain finite-difference method (FDFD) (Hustedt, et al. 2004; Operto, et al. 2009; Liu et al., 2018). To 82 

validate the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering, we 83 

compare the scattered waves of a single horizontal fracture obtained using our proposed modeling scheme with those obtained 84 

using poroelastic modeling scheme and elastic modeling scheme. Numerical examples of a fractured reservoir are presented 85 

to demonstrate that the proposed modeling scheme can properly simulate the wave attenuation and dispersion due to the FPD 86 

effects between the fracture system and background. A complex modified Marmousi model is also use to test the proposed 87 

modeling scheme and code. The scheme can be used not only to study the impact of mechanical and hydraulic of fracture 88 

properties on seismic scattering but can also to improve migration quality and the estimation of fracture mechanical 89 

characteristics in inversion. 90 

2 The elastic models 91 

The two most widely used non-attenuated and non-dissipative elastic models for fractured porous media are the low- and high-92 
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frequency limits elastic LSM that ignore the FPD effects between the background and the fractures. The two elastic models 93 

can be used to determine the effective anisotropic-elastic-moduli of the fractured porous rock.  94 

2.1 The low-frequency limits elastic linear slip models (LFLSM) 95 

The presence of fractures in a homogeneous and isotropic porous rock results in an effective anisotropic medium. The effective 96 

compliance matrix of the dry fractured rock 𝐒𝑑ry can be obtained using the LSM (Schoenberg and Sayers, 1995): 97 

𝐒𝑑ry = 𝐒𝑏
𝑑ry

+ 𝐙0,                     (1) 98 

where 𝐒𝑏
𝑑ry

 is the isotropic compliance matrix of the dry background medium in the absent of fractures, and 𝐙0 is the excess 99 

compliance matrix due to the dry fractures. For a single set of rotationally invariant fractures, 𝐙0  can be written as 100 

(Schoenberg and Sayers, 1995): 101 

𝑍𝑖𝑗,0 =
𝑍𝑇

4
(𝛿𝑖𝑘𝑛𝑙𝑛𝑗 + 𝛿𝑗𝑘𝑛𝑙𝑛𝑖 + 𝛿𝑖𝑙𝑛𝑘𝑛𝑗 + 𝛿𝑗𝑙𝑛𝑘𝑛𝑖) + (𝑍𝑁𝑑

− 𝑍𝑇)𝑛𝑖𝑛𝑗𝑛𝑘𝑛𝑙,          (2) 102 

where 𝑛𝑖 is the component of the local unit normal to the fracture surface, 𝑍𝑁𝑑
 and 𝑍𝑇 are the drained normal fracture 103 

compliance and tangential fracture compliance, respectively, as functions of fracture thickness ℎ𝑐 and the drained 104 

longitudinal modulus 𝐻𝑑
𝑐   and shear moduli 𝜇𝑐 of the fracture (Brajanovski et al., 2005): 105 

𝑍𝑁𝑑
≡

ℎ𝑐

𝐻𝑑
𝑐,  𝑍𝑇 ≡

ℎ𝑐

𝜇𝑐.                    (3) 106 

Since the fluid pressure is uniform in the low-frequency limit, the corresponding effective stiffness matrix 𝐂𝑙𝑓
sat of the fluid 107 

saturated rock can be obtained using the anisotropic Gassmann equation (Gurevich, 2003): 108 

𝐶𝑖𝑗,𝑙𝑓
sat = 𝐶𝑖𝑗

dry
+ 𝛼𝑖𝛼𝑗𝑀𝑑𝑟𝑦,  𝑖, 𝑗 = 1,… ,6.                (4) 109 

The anisotropic Biot-Willis coefficients 𝛼𝑚 are: 110 

𝛼𝑚 = 1 −
∑ 𝐶𝑚𝑛

dry3
𝑛=1

3𝐾𝑔
,  𝑚 = 1,2,3,                  (5) 111 

𝛼4 = 𝛼5 = 𝛼6 = 0. The Biot’s fluid-storage modulus 𝑀 is 112 

𝑀𝑑𝑟𝑦 =
𝐾𝑔

(1−𝐾0
∗ 𝐾𝑔⁄ )−𝜙(1−𝐾𝑔 𝐾𝑓⁄ )

,                  (6) 113 

where 𝐾𝑔  denotes the grain solid bulk modulus, 𝐾𝑓  the pore fluid bulk modulus, and 𝐾0
∗  the generalized drained bulk 114 

modulus, defined as 115 

𝐾0
∗ =

1

9
∑ ∑ 𝐶𝑖𝑗

dry3
𝑗=1

3
𝑖=1 .                    (7) 116 

2.2 The high-frequency limits elastic linear slip models (HFLSM) 117 

In the high-frequency limit, the fractures are hydraulically isolated from the saturated background medium. The effective 118 

compliance matrix of the saturated background medium permeated by the dry fractures can be expressed as (Guo et al., 2016): 119 

𝐒ℎ𝑓
1 = 𝐒𝑏

𝑠𝑎𝑡 + 𝐙0,                     (8) 120 
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where 𝐒𝑏
𝑠𝑎𝑡 is the isotropic compliance matrix of the saturated background medium in the absent of fractures. The effective 121 

stiffness coefficients of the saturated fractured rock can be written as: 122 

𝐶𝑖𝑗,ℎ𝑓
sat = 𝐶𝑖𝑗,ℎ𝑓

1 + 𝛼𝑖
1𝛼𝑗

1𝑀1,   𝑖, 𝑗 = 1,… ,6,               (9) 123 

where 𝛼1 and 𝑀1 can be again calculated using Eqs. (5)-(7) but replacing the solid grains bulk modulus 𝐾𝑔 with saturated 124 

bulk modulus of the background 𝐾𝑚
𝑠𝑎𝑡, the overall porosity 𝜙 with the fracture porosity 𝜙𝑐. 125 

3 Nakagawa’s poroelastic LSM (PLSM) 126 

Nakagawa and Schoenberg (2007) presented a PLSM in the framework of poroelasticity, representing the fracture as a highly 127 

compliant and porous thin layer embedded in a much stiffer and much less porous background (Barbosa et al., 2016a). Similar 128 

to the classic LSM, the PLSM assumes that across a fracture surface the stress tensor is continuous while the displacement 129 

tensor is discontinuous. The discontinuous displacement components for a horizonal fracture are (Nakagawa and Schoenberg, 130 

2007): 131 

[𝑢𝑥] =  𝑍𝑇𝜏𝑥𝑧,                     (10a) 132 

[𝑢𝑦] =  𝑍𝑇𝜏𝑦𝑧,                     (10b) 133 

[𝑢𝑧] = 𝑍𝑁𝐷
(𝜏𝑧𝑧 + 𝛼𝑃𝑓),                    (10c) 134 

[𝑤𝑧] = −𝛼𝑍𝑁𝐷
(𝜏𝑧𝑧 +

1

𝐵
𝑃𝑓),                   (10d) 135 

where the parameter 𝐵 = 𝛼𝑀 𝐻𝑢⁄ , and the definition of drained normal fracture compliance 𝑍𝑁𝐷
 and tangential fracture 136 

compliance 𝑍𝑇  are the same as those in LFLEM. Since the PLSM represents both the background and the fracture as 137 

poroelasticity, it is capable to describe the discontinuous displacement of the relative fluid in addition to the solid, implying 138 

that it can properly handle the FPD effects between the background and the fracture. Although it is difficult to incorporate the 139 

PLSM into the effective medium theory to obtain the effective moduli of the fractured porous rock, these boundary conditions 140 

can be easily incorporated into poroelastic finite-difference algorithm for modeling seismic wave scattering off large-scale 141 

fractures parallel to the coordinate axis. An alternative wavenumber domain method for modeling the scattered waves by 142 

poroelastic fractures is presented by Nakagawa and Schoenberg (2007) based on the PLSM. 143 

4 Barbosa’s viscoelastic LSM (VLSM) 144 

Barbosa et al. (2016a) derived a VLSM that account for the FPD effects between a fracture and background and the resulting 145 

stiffening effect impact on the fracture. The background is assumed to be not impacted by the FPD and can be represented by 146 

an elastic solid, whose properties are computed according to Gassmann’s equation. By representing fractures as extremely thin 147 

viscoelastic layers, the poroelastic effects were incorporated into the classical LSM through complex-valued and frequency-148 

dependent compliances. These compliances characterize the mechanical properties of the fluid-saturated fracture. 149 
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4.1 The boundary conditions of VLSM 150 

The discontinuous displacement components of the VLSM (Barbosa et al., 2016a) for a horizontal fracture are 151 

[𝑢𝑥] =  𝑍𝑇𝜏𝑥𝑧,                     (11a) 152 

[𝑢𝑦] =  𝑍𝑇𝜏𝑦𝑧,                     (11b) 153 

[𝑢𝑧] =  𝑍𝑁𝜏𝑧𝑧 + 𝑍𝑋휀𝑥𝑥,                    (11c) 154 

where 𝑍𝑁  and 𝑍𝑇  are generalized normal and tangential compliances respectively, and 𝑍𝑋  is related to the coupling 155 

between horizontal and vertical deformation of the fracture. The normal compliance 𝑍𝑁 and additional parameter 𝑍𝑋 are 156 

complex-valued and frequency-dependent, while the tangential compliance 𝑍𝑇  is the same as for elastic and poroelastic 157 

models. The three effective fracture parameters are given by Barbosa et al. (2016a) 158 

𝜂𝑁 = 
𝜂𝑁𝐷

[𝛼𝜂𝑁𝑈
𝐷𝑃2

𝑏 −2𝐵𝛾𝑃2
𝑏 𝑖𝑘𝑃2

𝑏 −2𝛼𝑖𝑘𝑃2
𝑏 (1 𝛾𝑃2

𝑏⁄ +2𝐵)]

𝛼𝜂𝑁𝐷
𝐷𝑃2

𝑏 −2𝐵𝛾𝑃2
𝑏 𝑖𝑘𝑃2

𝑏 ,               (12a) 159 

𝜂𝑋 = 
−4𝑘𝑃2

𝑏 𝛼𝑏𝜂𝑇𝑀𝑏𝜇𝑏𝜇(𝛼𝐻𝑈
𝑏𝑀−𝛼𝑏𝐻𝑈𝑀𝑏)

(𝐻𝑈
𝑏)

2
(ℎ𝐻𝑈𝜔𝜂𝑓

𝑏+2𝑘𝑃2
𝑏 𝑀𝐻𝐷𝜅𝑏)

.                 (12b) 160 

We rewrite Eqs. (12a)-(12b) as 161 

𝑍𝑁 = 𝑍𝑁𝑈
+ 𝑍𝑁𝐷

𝐺1(1+𝑖)

√𝜔+𝐺2(1+𝑖)
,                   (13a) 162 

𝑍𝑋 = −
𝐺3(1+𝑖)

√𝜔+𝐺4(1+𝑖)
,                     (13b) 163 

where 𝑍𝑁𝑈
 and 𝑍𝑁𝐷

 are the undrained and drained normal fracture compliance respectively, 𝜔 is the angular frequency. 164 

The four real-valued parameters 𝐺1, 𝐺2, 𝐺3 and 𝐺4 are defined as  165 

𝐺1 = √
𝜅𝑏

𝜂𝑁𝑏

(𝐵𝑏−𝐵𝑐)
2

𝜂𝑁𝐷

,      𝐺2 ≈ √
𝜅𝑏

𝜂𝑁𝑏

1

𝜂𝑁𝐷

,                (14a) 166 

𝐺3 =
2√2 𝛼𝑏𝜇𝑏(𝐵𝑏−𝐵𝑐)√𝐷𝑏

𝐻𝐷
𝑏 ,  𝐺4 =

√2 𝜅𝑏

ℎ𝑐𝜅𝑐

𝐷𝑐

√𝐷𝑏
,                (14b) 167 

where the parameters with superscripts 𝑏  correspond to background properties and the parameters with superscripts 𝑐 168 

correspond to fracture parameters. In Eqs. (14a)-(14b), 𝐷 is the diffusivity defined as 𝐷 = 𝜅𝑁 𝜂⁄  (𝑁 = 𝐻𝐷𝑀 𝐻𝑈⁄ ), and the 169 

dimensionless parameter 𝐵 defined as 𝐵 = 𝛼𝑀 𝐻𝑈⁄ . 𝐻𝑈, 𝐻𝐷 and 𝜇 are the corresponding undrained 𝑃 wave modulus, 170 

drained 𝑃 wave modulus and shear modulus. The Barbosa’s VLSM can properly capture the FPD effects between a fracture 171 

and background. 172 

4.2 The effective viscoelastic-anisotropic stiffness matrix based on Barbosa’s VLSM 173 

To incorporate the VLSM into viscoelastic finite-difference modeling algorithms, we give the specific derivation of the 174 

effective viscoelastic-anisotropic stiffness matrix of the numerical grids on a fracture based on Coates and Schoenberg’s local 175 

effective medium theory (1995). The porous background is assumed to be unaffected by the FPD in the presence of fractures 176 

because of the small amount of diffusing fluid and large compliance contrast between background and fluid. Thus, the rock 177 

background can be represented by an elastic homogeneous solid and the strain 𝛆𝑏 of the background can be expressed as 178 
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휀𝑖𝑗
𝑏 = 𝑠𝑖𝑗𝑘𝑙

𝑏 𝜎𝑘𝑙,                      (15) 179 

where the compliance tensor 𝐬𝑏 are computed according to Gassmann’s equation (Rubino et al., 2015; Barbosa et al., 2016a), 180 

and 𝛔 is the average stress tensor. The exceed strain tensor 𝛆𝑐 induced by a single fracture with surface 𝑆 in a representative 181 

volume 𝑉 (e.g. the volume of numerical cell) is given by (Hudson and Knopoff, 1989; Sayers and Kachanov, 1995; Liu, et 182 

al., 2000)  183 

휀𝑖𝑗
𝑐 = 𝑠𝑖𝑗𝑘𝑙

𝑐 𝜎𝑘𝑙 =
1

2𝑉
∫([𝑢𝑖]𝑛𝑗 + [𝑢𝑗]𝑛𝑖)𝑑𝑆,                (16) 184 

where 𝒔𝑐  is the extra compliance tensor resulting from the fractures, [𝑢𝑖]  is the 𝑖 th component of the displacement 185 

discontinuity on 𝑆 and 𝑛𝑖 is the 𝑖th component of the fracture normal. Note that Eq. (16) is applicable to finite, nonplanar 186 

fractures in the long wavelength limit, i.e., the applied stress is assumed to be constant over the representative volume.  187 

If we assume that the interface of the fracture is normal to the 𝑧-axis (fracture normal vector 𝒏 is (0,0,1)), substituting Eqs. 188 

(11a)-(11c) into Eq. (16), we can obtain the nonzero element of the exceed fracture strain tensor 189 

휀𝑥𝑧
𝑐 =

𝑆

𝑉
𝑍𝑇𝜏𝑥𝑧,                     (17a) 190 

휀𝑦𝑧
𝑐 =

𝑆

𝑉
𝑍𝑇𝜏𝑦𝑧,                     (17b) 191 

휀𝑧𝑧
𝑐 =

𝑆

𝑉
(𝑍𝑁𝜏𝑧𝑧 + 𝑍𝑋휀𝑥𝑥

𝑏 ),                   (17c) 192 

Then the exceed fracture strain tensor 휀𝑖𝑗
𝑐  and the background strain tensor 휀𝑖𝑗

𝑏  can be written in matrix from in Voigt notation 193 

𝐞𝑏 = 𝐒𝑏𝛔,                      (18) 194 

𝐞𝑐 =
𝑆

𝑉
(𝐙1𝛔 + 𝐙2𝐞

𝑏) =
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)𝛔,                (19) 195 

where the strain matrix 𝐞 = [휀11, 휀22, 휀33, 2휀23, 2휀13, 2휀13]
𝑇 , and the stress matrix 𝛔 = [𝜎11, 𝜎22, 𝜎33, 𝜎23, 𝜎13, 𝜎12]

𝑇 . The 196 

6 × 6 fracture compliance matrix 𝐙1 and additional dimensionless matrix 𝐙2 according to the Voigt notation are defined as 197 

𝐙1 =

[
 
 
 
 
 
0 0 0
0 0 0
0 0 𝑍𝑁

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝑍𝑇 0 0
0 𝑍𝑇 0
0 0 0]

 
 
 
 
 

, 𝐙2 =

[
 
 
 
 
 
0 0 0
0 0 0
𝑍𝑋 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 

.            (20) 198 

The average strain 𝐞 in a homogeneous porous rock containing single fracture can be expressed as the sum of the strains of 199 

background and the fractures 200 

𝐞 = 𝐞𝑏 + 𝐞𝑐.                      (21) 201 

Substituting Eq. (15) and Eq. (19) into Eq. (21), we can obtain the average strain matrix 202 

𝐞 = [𝐒𝑏 +
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)] 𝛔.                   (22) 203 

Thus, the effective stiffness matrix 𝐂 can be expressed as 204 

𝐂 = [𝐒𝑏 +
𝑆

𝑉
(𝐙1 + 𝐙2𝐒

𝑏)]
−1

= 𝐂𝑏 [𝐈 +
𝑆

𝑉
(𝐙1𝐂

𝑏 + 𝐙2)]
−1

.             (23) 205 
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The effective stiffness matrix of case of an inclined fracture can be obtained by rotating the coordinate axis to keep 𝑧-axis 206 

perpendicular to fracture interface. We first define the inclined fracture have an angle 𝜑 and an azimuth angle 𝜃, and then 207 

the rotation matrix can be obtained: 208 

𝐑 = [

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑
−𝑠𝑖𝑛𝜑 0 𝑐𝑜𝑠𝜑

],                 (24) 209 

as well as the corresponding stress Bond matrix 𝐀𝜎  and strain Bond matrix 𝐀𝜀 . The new stress matrix 𝐞′ and strain matrix 210 

𝛔′ can be expressed as the multiplication of the old one and Bond matrix 211 

𝐞′ = 𝐀𝜀𝐞 , 𝛔′ = 𝐀𝜎𝛔.                    (25) 212 

By substituting Eq. (25) into Eq. (19), the new exceed fracture strain matrix can be obtained 213 

𝐞𝑐 =
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝐒

𝑏)𝐀𝜀
𝑇𝛔.                   (26) 214 

Finally, substituting Eq. (6) into Eq. (21), the average strain matrix of each numerical cell containing discrete distributed 215 

fractures with the same arbitrary direction can be expressed as 216 

𝐞 = [𝐒𝑏 +
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝑺

𝑏)𝐀𝜀
𝑇] 𝛔,                  (27) 217 

and the corresponding effective stiffness matrix 𝐂 is 218 

𝐂 = [𝐒𝑏 +
𝑆

𝑉
𝐀𝜀(𝐙1 + 𝐙2𝑺

𝑏)𝐀𝜀
𝑇]

−1

,                  (28) 219 

If the background media is isotropic, the 𝐂 can be simplified as 220 

𝐂 = 𝐂𝑏 [𝐈 +
𝑆

𝑉
𝐀𝜀(𝐙1𝐂

𝑏 + 𝐙2)𝐀𝜀
𝑇]

−1

,                 (29) 221 

If we ignore the interaction between different fractures and the FPD along the fracture interfaces, the result can be easily 222 

extended to the case of multiple sets of discrete distributed large-scale fractures with arbitrary orientation: 223 

𝐂 = 𝐂𝑏 [𝐈 + ∑
𝑆𝑟

𝑉
𝐀𝜀𝑟(𝐙1𝑟𝐂

𝑏 + 𝐙2𝑟)𝐀𝜀𝑟
𝑇𝑁𝑐

𝑟=1 ]
−1

,               (30) 224 

where 𝑁𝑐  is total number of the fracture directions and the subscript 𝑟  denotes the 𝑟 th direction. The derived effective 225 

stiffness matrix is to be employed in the viscoelastic finite-difference modeling of discrete distributed large-scale fractures in 226 

porous rock.  227 

5. Seismic modeling of fractured porous rock  228 

In this section, we focus on the implementation of seismic modeling of fluid-saturated porous media containing discrete 229 

distributed large-scale fractures in 2D case. We develop a viscoelastic modeling scheme based on the VLSM and local effective 230 

medium theory (Coates and Schoenberg, 1995) to incorporate the FPD effects between fractures and background. To validate 231 

that the proposed viscoelastic modeling scheme can capture the impact of FPD effects on seismic wave scattering of fractures, 232 

we outline the implementation of poroelastic modeling scheme using an explicit application of the PLSM. 233 
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5.1 viscoelastic modeling based on VLSM 234 

For viscoelastic modeling, we adopt local effective media theory based on VLSM to derive the effective anisotropic 235 

viscoelastic compliances in each numerical cell by superimposing the compliances of the background and the fractures. Since 236 

the real structure of the rock is substituted by ideally continua, the balance equations of classical continuum mechanics can be 237 

applied without considering the discontinuity at the fracture interfaces (Lewis and Schrefler, 1998; Gavagnin et al., 2020), and 238 

the constitutive equations are characterized by effective complex-valued and frequency-dependent TTI viscoelastic stiffness. 239 

Thus, the second-order heterogeneous governing equations of fractured porous rock with PML in frequency domain can be 240 

expressed as: 241 

𝜔2𝜌𝑢𝑥 +
1

𝜉𝑥
𝜕𝑥 (

𝑐11

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐13

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐15

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑧) +

1

𝜉𝑧
𝜕𝑧 (

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐55

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐55

𝜉𝑥
𝜕𝑥𝑢𝑧) = 0,  (31a) 242 

𝜔2𝜌𝑢𝑧 +
1

𝜉𝑥
𝜕𝑥 (

𝑐15

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐55

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐55

𝜉𝑥
𝜕𝑥𝑢𝑧) +

1

𝜉𝑧
𝜕𝑧 (

𝑐13

𝜉𝑥
𝜕𝑥𝑢𝑥 +

𝑐33

𝜉𝑧
𝜕𝑧𝑢𝑧 +

𝑐35

𝜉𝑧
𝜕𝑧𝑢𝑥 +

𝑐35

𝜉𝑥
𝜕𝑥𝑢𝑧) = 0,  (31b) 243 

where 𝑢𝑥 and 𝑢𝑧 are the horizontal and vertical components of particle displacement vector, 𝜌 is the effective density, and 244 

𝑐𝑖𝑗  are the components of complex-valued and frequency-dependent effective stiffness matrix, 𝜉𝑥 and 𝜉𝑧 are the frequency 245 

domain PML damping functions.  246 

In time domain, the governing equations are integral differential equations, which require special processing for the 247 

convolution operations, resulting in high computational costs. Although the problem can be relieved (mitigated) by memory 248 

functions, it still requires high memory requirements. Instead, the governing equations can be straightforwardly solved using 249 

FDFD. To efficiently and accurately modelling of seismic wave propagation in fluid saturated fractured porous rock, we solve 250 

the second-order heterogeneous governing equations with mixed-grid stencil FDFD method (Jo et al., 1996; Hustedt et al. 251 

2004). The mixed system of governing equations is formulated by combining the classical Cartesian coordinate system (CS) 252 

and the 45◦-rotated coordinate system (RS): 253 

𝜔2𝜌𝑢𝑥 + 𝑤1(𝐴𝑐𝑢𝑥 + 𝐵𝑐𝑢𝑧) + (1 − 𝑤1)(𝐴𝑟𝑢𝑥 + 𝐵𝑟𝑢𝑧) = 0,             (32a) 254 

𝜔2𝜌𝑢𝑧 + 𝑤1(𝐶𝑐𝑢𝑥 + 𝐷𝑐𝑢𝑧) + (1 − 𝑤1)(𝐶𝑟𝑢𝑥 + 𝐷𝑟𝑢𝑧) = 0,             (32b) 255 

where the optimal averaging coefficient 𝑤1 = 0.5461 (Jo et al., 1996). The coefficients 𝐴𝑐, 𝐵𝑐, 𝐶𝑐, 𝐷𝑐  and 𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 𝐷𝑟 256 

are functions of the damping functions, effective stiffness coefficients and spatial derivative operators and the detailed 257 

expressions are given in Appendix A. We follow Hustedt et al., (2004) and Liu et al., (2018) to discretize the derivative 258 

operation on the mixed systems using mixed grid stencil. After discretization and arrangement, the mixed system of governing 259 

equations can be written in matrix from as 260 

[
𝐌 + 𝑤1𝐀𝑐 + (1 − 𝑤1)𝐀𝑟 𝑤1𝐁𝑐 + (1 − 𝑤1)𝐁𝑟

𝑤1𝐂𝑐 + (1 − 𝑤1)𝐂𝑟 𝐌 + 𝑤1𝐃𝑐 + (1 − 𝑤1)𝐃𝑟
] [

𝐮𝑥

𝐮𝑧
] = [

𝟎
𝟎
],           (36) 261 

where 𝐌 denotes the diagonal mass matrix of coefficients 𝜔2𝜌, and blocks 𝐀𝑐 , 𝐁𝑐 , 𝐂𝑐, 𝐃𝑐 and 𝐀𝑟 , 𝐁𝑟 , 𝐂𝑟 , 𝐃𝑟 form the 262 

stiffness matrices for the CS and RS stencils, respectively, and the corresponding coefficients of submatrices are given in 263 
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Appendix B. 264 

To improve the modelling accuracy of mixed-grid stencil, the acceleration term 𝜔2𝜌 are approximated using a weighted 265 

average over the mixed operator stencil nodes 266 

[𝜔2𝜌]i,j ≈ 𝜔2 [𝑤𝑚1𝜌i,j + 𝑤𝑚2(𝜌i+1,j + 𝜌i−1,j + 𝜌i,j+1 + 𝜌i,j−1) +
(1−𝑤𝑚1−4𝑤𝑚2)

4
(𝜌i+1,j+1 + 𝜌i−1,j−1 + 𝜌i−1,j+1 + 𝜌i+1,j−1)] ,(37) 267 

where the optimal coefficients 𝑤𝑚1 =  0.6248 and 𝑤𝑚2 = 0.09381 are computed by Jo et al. (1996).  268 

In order to assess the FPD effects on seismic response, the similar procedure was adopted in the implementation of elastic 269 

modeling by replacing the VLSM with the LFLSM (assuming fluid pressure is equilibrium) or the HFLSM (assuming fluid 270 

pressure is unequilibrium). 271 

5.2 Poroelastic modeling based on PLSM 272 

The poroelastic modeling means that we numerically solve the Biot’s equations and adopt an explicit implementation of the 273 

PLSM across each fracture instead of using the effective media theory. Hence, the poroelastic modeling can naturally deal with 274 

the FPD between fracture and background and account for its impact on wave scattering. Although it is difficult to implement 275 

an explicit application of PLSM for arbitrary orientated fracture, it is relatively straightforward for horizonal or vertical fracture.  276 

In frequency domain, the governing equations for an isotropic poroelastic media in the absent of fractures can be written as 277 

(Biot, 1962): 278 

𝜔2𝜌𝐮 + 𝜔2𝜌𝑓𝐰 + ∇ ∙ 𝛔 = 0,                   (38a) 279 

𝜔2𝜌𝑓𝐮 + 𝑖𝜔
𝜂

𝜅
𝐰 − ∇𝑃𝑓 = 0,                   (38b) 280 

𝛔 = [(𝐻𝑈 − 2𝜇)∇ ∙ 𝐮 + 𝛼𝑀∇ ∙ 𝐰]𝐈 + 𝜇(∇𝐮 + ∇𝐮𝑻),              (38c) 281 

−𝑃𝑓 = 𝛼𝑀∇ ∙ 𝐮 + 𝑀∇ ∙ 𝐰.                   (38d) 282 

By discretizing Eqs. (38a)-(38d) using second-order differences, we can obtain: 283 

𝜔2𝜌𝑢𝑥 i,j + 𝜔2𝜌𝑓𝑤𝑥 i,j +
𝜎𝑥𝑥 i+1,j−𝜎𝑥𝑥 i,j

Δ
+

𝜎𝑥𝑧 i,j+1−𝜎𝑥𝑧 i,j

Δ
= 0,             (39a) 284 

𝜔2𝜌𝑢𝑥 i,j + 𝜔2𝜌𝑓𝑤𝑥 i,j +
𝜎𝑥𝑥 i+1,j−𝜎𝑥𝑥 i,j

Δ
+

𝜎𝑥𝑧 i,j+1−𝜎𝑥𝑧 i,j

Δ
= 0,             (39b) 285 

𝜔2𝜌𝑓𝑢𝑥 i,j + 𝑖𝜔
𝜂

𝜅
𝑤𝑥 i,j −

𝑃𝑓 i+1,j−𝑃𝑓 i,j

Δ
= 0,                (39c) 286 

𝜔2𝜌𝑓𝑢𝑧 i,j + 𝑖𝜔
𝜂

𝜅
𝑤𝑧 i,j −

𝑃𝑓 i,j+1−𝑃𝑓 i,j

Δ
= 0,                (39d) 287 

𝜎𝑥𝑥 i,j = 𝐻𝑈

𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ (𝐻𝑈 − 2𝜇)

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝛼𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
),        (39e) 288 

𝜎𝑧𝑧 i,j = (𝐻𝑈 − 2𝜇)
𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ 𝐻𝑈

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝛼𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
),        (39f) 289 

𝜎𝑥𝑧 i,j = 𝜇 (
𝑢𝑥 i,j+1−𝑢𝑥 i,j

Δ
+

𝑢𝑧 i+1,j−𝑢𝑧 i,j

Δ
),                 (39g) 290 

−𝑃𝑓 = 𝛼𝑀
𝑢𝑥 i+1,j−𝑢𝑥 i,j

Δ
+ 𝛼𝑀

𝑢𝑧 i,j+1−𝑢𝑧 i,j

Δ
+ 𝑀 (

𝑤𝑥 i+1,j−𝑤𝑥 i,j

Δ
+

𝑤𝑧 i,j+1−𝑤𝑧 i,j

Δ
).          (39h) 291 
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In the presence of horizonal fracture passing through the numerical cell (i, j0), the PLSM can be written as: 292 

𝑢𝑥 i,j0+1 − 𝑢𝑥 i,j0 = (𝑍𝑇𝜎𝑥𝑧)i,j0 ,                  (40a) 293 

𝑢𝑧 i,j0+1 − 𝑢𝑧 i,j0 = (𝑍𝑁𝐷
𝜎𝑧𝑧 + 𝑍𝑁𝐷

𝛼𝑃𝑓)i,j0
,                (40b) 294 

𝑤𝑧 i,j0+1 − 𝑤𝑧 i,j0
= −(𝛼𝑍𝑁𝐷

𝜎𝑧𝑧 +
𝛼𝑍𝑁𝐷

𝐵
𝑃𝑓)

i,j0
.               (40c) 295 

Rearrange the Eqs. (39e)-(39h), i.e. use the displacement components to represent the stress components, and superimpose the 296 

discrete Eqs. (40a)-(40c), we get the following discrete equations: 297 

𝑢𝑥 i+1,j0−𝑢𝑥 i,j0

Δ
= [

𝐻𝐷

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 +

(2𝜇−𝐻𝐷)

4𝜇(𝐻𝐷−𝜇)
𝜎𝑧𝑧 +

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
𝑃𝑓]

i,j0

,            (41a) 298 

𝑢𝑧 i,j0+1−𝑢𝑧 i,j0

Δ
= [

(2𝜇−𝐻𝐷)

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 + [

𝐻𝐷

4𝜇(𝐻𝐷−𝜇)
+

𝑍𝑁𝐷

Δ
] 𝜎𝑧𝑧 + [

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
+

𝛼𝑍𝑁𝐷

Δ
] 𝑃𝑓]

i,j0

,         (41b) 299 

𝑢𝑥 i,j0+1−𝑢𝑥 i,j0

Δ
+

𝑢𝑧 i+1,j0−𝑢𝑧 i,j0

Δ
= [(

1

𝜇
+

𝑍𝑇

Δ
)𝜎𝑥𝑧]

i,j0

,               (41c) 300 

𝑤𝑥 i+1,j0−𝑤𝑥 i,j0

Δ
+

𝑤𝑧 i,j0+1−𝑤𝑧 i,j0

Δ
= [

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
𝜎𝑥𝑥 + (

2𝛼𝜇

4𝜇(𝐻𝐷−𝜇)
−

𝛼𝑍𝑁𝐷

Δ
) 𝜎𝑧𝑧 −

1

𝑀
(

𝐻𝑈−𝜇

𝐻𝐷−𝜇
+

𝐻𝑈𝑍𝑁𝐷

Δ
) 𝑃𝑓]

i,j0

.     (41d) 301 

For a numerical cell, if j ≠ j0, we set 𝑍𝑁𝐷
= 𝑍𝑇 = 0. By re-injecting Eqs. (41a)-(41d) into the discretized Eqs. (39a)-(39c), 302 

we eliminate the stress terms and obtain the compact discretized system of wave equations that contain only the displacement 303 

field: 304 

[

𝐆11 𝐆12

𝐆21 𝐆22

𝐆13 𝐆14

𝐆23 𝐆24

𝐆31 𝐆32

𝐆41 𝐆42

𝐆33 𝐆34

𝐆43 𝐆44

] [

𝐮𝑥

𝐮𝑧
𝐰𝑥

𝐰𝑧

] = [

𝟎
𝟎
𝟎
𝟎

],                 (42) 305 

where blocks 𝐆𝑖𝑗  (𝑖, 𝑗 = 1…4) form the stiffness matrices of the discretized system of the poroelastic wave equations. The 306 

poroelastic modeling based on PLSM will be used to validate the other modeling schemes. 307 

6. Numerical examples 308 

Table1 Physical Properties of the Materials Employed in the Numerical Modeling 

Parameters Background Fracture Underlying 

Porosity, 𝜙 0.15 0.8 0.05 

Permeability, 𝜅 0.1 D 100 D 0.01 D 

Solid bulk modulus, 𝐾𝑠  36 GPa 36 GPa 36 GPa 

Frame bulk modulus, 𝐾𝑚 20.3 GPa 0.055 GPa 30.6 GPa 

Frame shear modulus, 𝜇𝑚 18.6 GPa 0.033 GPa 32.2 GPa 

Solid density, 𝜌𝑠 2700 kg/m3 2700 kg/m3 2700 kg/m3 

Fluid density, 𝜌𝑓 1000 kg/m3 1000 kg/m3 1000 kg/m3 

Fluid shear viscosity, 𝜂𝑓 0.01 Poise 0.01 Poise 0.01 Poise 

Fluid bulk modulus, 𝐾𝑓 2.25 GPa 2.25 GPa 2.25 GPa 

Thickness, ℎ  1 mm  

In this section, we apply different numerical modeling schemes on three fractured models to examine the FPD effects on 309 

seismic wave scattering. We mainly focus on the amplitudes and phases of the scattered and reflected waves generated by 310 
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pressure source and shearing source.  311 

6.1 Single horizontal fracture model 312 

Here, we numerically simulate the scattering of seismic waves from a single horizontal fracture embedded in a homogeneous 313 

background. The model measures 2000m × 1500m with a grid interval 5m (namely, the numerical grids size is 401 × 301) 314 

surrounded by a 200m thick PML boundary. The fracture is located 750m directly below the source (1000m, 30m), with a 315 

500m horizontal extending. A Ricker wavelet with a central frequency of 35Hz is used as the temporal source excitation. The 316 

material properties of the fracture and background are given in Table 1 modified from Nakagawa and Schoenberg (2007) and 317 

Barbosa et al. (2016a). For comparison, we present the seismic wavefields obtained using the poroelastic modeling based on 318 

PLSM, the viscoelastic modeling based on VLSM, as well as the elastic modeling based on LFLSM and HFLSM. To further 319 

study the impact of FPD effects on P- and S-wave, we also apply the pressure source and shearing source in all four schemes, 320 

respectively. 321 

 322 

Figure 1: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms due to a P-wave point 323 

source: (a) the PLSM based poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LFLSM based elastic modeling 324 

and (d) the HFLSM based elastic modeling. 325 
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 326 

Figure 2: Comparison of 1-D seismograms components Ux and Uz at (1200m, 0m) for a single horizontal fracture model due to a P-327 

wave point source. 328 

Figure 1 shows the 280ms snapshots of the displacement fields for the single horizontal fracture model models with P-wave 329 

point source. The displacement fields are calculated by the PLSM-based poroelastic modeling, the VLSM-based viscoelastic 330 

modeling, the LFLSM-based elastic modeling and the HFLSM-based elastic modeling, respectively. The asterisk represents 331 

the source and the blue line represents the fracture. To make the small scattered wave visible, large amplitude is clipped, thus 332 

the transmitted compressional wave (TPP), scattered compressional wave (SPP) and scattered converted wave (SPS) can be seen 333 

clearly. Figure 2 present the comparison of 1-D seismograms at (1200m, 0m).  334 

We consider the poroelastic modeling as a reference scenario because it can naturally incorporate the FPD effects. Figure 1 335 

and Figure 2 suggest very good agreement between the SPP amplitude calculated using the PLSM-based and VLSM-based 336 

modeling, while the HFLSM-based modeling obviously underestimate the SPP amplitude, and the LFLSM-based modeling 337 

overestimate the SPP amplitude. This is to be expected, since the scattering behavior of a fracture is mainly controlled by the 338 

stiffness contrast with respect to the background. The HFLSM assumes there is insufficient time for fluid exchange at the 339 

fracture interface, the fracture behaves as being sealed and the stiffeness of the saturated fracture is maximal, resulting in an 340 

underestimated stiffness contrast between fracture and background. The LFLSM assumes there is enough time for fluid flow 341 

between the fracture and background, the deformation of the fracture is maximal, resulting in an overestimated stiffness 342 

contrast with background. However, the VLSM derived from poroelastic theory can properly incorporate the FPD effects, 343 

leading to a frequency-dependent stiffness contrast equivalent to the PLSM. It can be note that the SPP amplitudes obtained 344 

using the LFLSM-based modeling is comparable to that of the PLSM based modeling, because the FPD effects mainly occur 345 

at seismic frequencies closer to the low frequency limit. The SPP travel time obtained using the four modeling schemes shows 346 

good consistency. Figure 2 also shows that the discrepancy of the SPS amplitudes is almost negligible. Figure 1 and Figure 2 347 

demonstrate that the DLSM-based viscoelastic modeling can appropriately capture the FPD effects on wave scattering of a 348 

fluid saturated fracture. However, the two elastic modeling cannot correctly estimate the SPP amplitudes. 349 
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 350 

Figure 3: Snapshots of the wavefields components Ux and Uz for a single horizontal fracture model at 280ms due to a S-wave point 351 

source: (a) the PLSM based poroelastic modeling, (b) the VLSM based viscoelastic modeling, (c) the LFLSM based elastic modeling 352 

and (d) the HFLSM based elastic modeling. 353 

 354 

Figure 4: Comparison of 1-D seismograms components Ux and Uz at receiver (1200m, 0m) for a single horizontal fracture model 355 

due to a S-wave point source. 356 

Figure 3 shows the 360ms snapshots of the displacement fields for the single horizontal fracture model models with S-wave 357 

point source. Figure 4 is the comparison of 1-D seismograms at (1200m,0m). Figure 3 and Figure 4 show that the amplitudes 358 

of the calculated SSP and SSS using four modeling schemes have good consistency, indicating that S-wave point source 359 

exploration survey is less sensitive to fluids or FDP effects for a single fracture. The scattering behavior is mainly controlled 360 

by the drained stiffness contrast between the fracture and the background. 361 

6.2 Fractured reservoir model 362 

In addition to a single fracture, we are more interested in the scattering behavior of discretely distributed fractures system. To 363 
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this end, we designed a fractured reservoir model containing a conjugate fracture system (consisting of two sets of mutually 364 

perpendicular fractures, as illustrated in Figure 5). The normal spacing and extending of this set of conjugate fractures are 365 

1.768m and 70.7m, respectively. The material properties of the fracture, background (yellow region) and underlying (green 366 

region) formation are given in Table 1. The model size, grid interval and source location are the same as those in the previous 367 

numerical examples. 368 

 369 

Figure 5: Schematic diagram of the fractured reservoir model I with a conjugate fracture system. The black segments present the 370 

fracture system. The normal spacing and extending of each fracture are 1.768m and 70.7m, respectively. 371 
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 372 

Figure 6: Seismogram components Ux and Uz of the fractured reservoir model I due to a P-wave point source: calculated using (a) 373 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. A and B are 374 

scattered compressional wave from top and bottom, respectively, C and D are scattered converted wave top and bottom, respectively, 375 

F and G are reflected compressional wave and converted wave, respectively, E is scattered diffracted wave. 376 

Figure 6 presents the seismograms of fractured reservoir model I for a P-wave point source. The scattered compressional wave 377 

(SPP) and scattered converted wave (SPS) from the top and bottom of the fractured reservoir, the reflected compressional wave 378 

(RPP), converted wave (RPS) from the underlying formation, diffracted wave at the edge of the fractured reservoir can be clearly 379 

identified. Similar to the single fracture case, the amplitude of the SPP from the top of the fractured reservoir obtained by the 380 

HFLSM-based modeling is weakest (underestimated), that obtained by LFLSM-based modeling is strongest (overestimated), 381 

and that obtained by the VLSM-based modeling is intermediate (accurate). The purple arrows in the Figure 6 (d) indicate that 382 

the SPP from the bottom of the fractured reservoir obtained by the LFLSM-based and HFLSM-based modeling has a slightly 383 

larger amplitude than that from the top, while the SPP from the bottom of the fractured reservoir obtained by the VLSM-based 384 

modeling has a slightly smaller amplitude than that from the top. This is expected, since the VLSM-based modeling scheme 385 

can capture the wave attenuation and dispersion due to the FDP effects between the fracture system and background, while the 386 

LFLSM and HFLSM represent non-attenuated and non-dispersive elastic processes. However, due to the weak degree of 387 

dispersion, the SPP travel time obtained by the three modeling schemes is almost consistent. Figure 6 shows that the amplitudes 388 

of the RPP from the underlying formation calculated by the HFLSM-based and LFLSM-based modeling are almost equal, while 389 
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that calculated by the VLSM-based modeling is attenuated and dispersed. That again indicates the VLSM-based modeling can 390 

capture the FPD effects. The SPS and RPS show similar behavior as the SPP and RPP. Figure 6 suggests that the scattered waves 391 

from the bottom of the fractured reservoir are attenuated and dispersed by the FPD effects and the reflected waves can retain 392 

the relevant attenuation and dispersion information. 393 

 394 
Figure 7: Seismogram components Ux and Uz of the fractured reservoir model I due to a S-wave point source: calculated using (a) 395 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. A, B are scattered 396 

converted SP-wave from top and bottom, respectively, C and D are scattered shear SS-wave from top and bottom, respectively, F 397 

and G are reflected converted SP-wave and shear SS-wave, respectively, E is scattered diffracted wave. 398 

Figure 7 presents the seismograms of fractured reservoir model I for a S-wave point source. The scattered converted wave (SSP) 399 

and shearing wave (SSS) from the top and bottom of the fractured reservoir, the reflected converted wave (RSP) and shearing 400 

wave (RSS) from the underlying formation can be identified in Figure 7. Unlike the case of single horizontal fracture, the FPD 401 

effects between a conjugate fracture system and background can attenuate and disperse the SPP, SPS, RPP and RPS for a S-wave 402 

point source exploration survey. 403 
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 404 
Figure 8: Schematic diagram of the fractured reservoir model II. The normal spacing and extending of each fracture are 1.768m 405 

and 282.8m, respectively. 406 

The attenuation and dispersion caused by FDP effects are strongly affected by the thickness of the reservoir. In general, the 407 

thicker the fractured reservoir, the more severe attenuation and dispersion of the seismic wave. To demonstrate the strong 408 

attenuation and dispersion caused by FDP effect, we modify the fractured model I, increase each fracture to 282.8m without 409 

changing other parameters, and obtain a fractured model II. Figure 9 presents the seismograms of fractured reservoir model II 410 

for a P-wave point source. Figure 9 shows that the SPP and SPS from the bottom of the fractured reservoir and the RPP and RPS 411 

from the underlying formation obtained by the VLSM-based modeling are strongly attenuated and dispersed, proving that the 412 

VLSM-based modeling can be captured the FPD effects when seismic waves travel through the fractured reservoir. Figure10 413 

presents the seismograms of the fractured reservoir model II for a S-wave point source. Figure 10 shows that the scattered and 414 

reflected waves obtained by VLSM-based modeling are also strongly attenuated and dispersed. 415 
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 416 
Figure 9: Seismogram components Ux and Uz of the fractured reservoir model II due to a P-wave point source: calculated using (a) 417 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. The meanings of 418 

A, B, C, D, E, F and G are same as those in Figure 9. 419 

 420 

https://doi.org/10.5194/egusphere-2022-1388
Preprint. Discussion started: 2 January 2023
c© Author(s) 2023. CC BY 4.0 License.



20 
 

Figure 10: Seismogram components Ux and Uz of the fractured reservoir model I due to a S-wave point source: calculated using (a) 421 

the LFLSM, (b) the VLSM, (c) the HFLSM. (d) is the comparison of single trace extracted from the three gathers. The meanings of 422 

A, B, C, D, E, F and G are same as those in Figure 10. 423 

6.3 Modified Marmousi model 424 

 425 

Figure 11: The physical properties and elastic modulus models of the modified Marmousi model. 426 

We test the proposed VLSM-based modeling scheme on a more complex modified Marmousi model. To modify the Marmousi 427 

model, we generate a porosity model, permeability model and discrete large-scale fracture system, and transform the original 428 

P-wave velocity and density into the fluid saturated bulk and shear modulus of the background by a constant Poisson’s ratio 429 

0.5, and finally obtain the grain bulk modulus, the frame bulk and shear modulus of the background through Gassmann 430 

equation and empirical formula (𝐾𝑚 = (1 − 𝜙)3 (1−𝜙)⁄ 𝐾𝑠). The input physical properties and elastic modulus models of the 431 

modified Marmousi model are present in Figure 11. The fluid density, bulk modulus and viscosity are the same as in Table 1. 432 

The model size is 4250m×1750m with grid interval 5m and a 100m thick PML boundary. The source is located at the surface 433 

(2125m, 0m). A Ricker wavelet with a central frequency of 25Hz is used as the temporal source excitation. 434 
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 435 
Figure 12: Snapshots of the wavefields components Ux and Uz at 1000ms: (a) the original Marmousi model without fractures, (b) 436 

the modified Marmousi model with fractures and (c) the differences. 437 

 438 

Figure 13: Seismogram components Ux and Uz: (a) the modified Marmousi model with fractures, (b) the original Marmousi model 439 

without fractures and (c) the differences. 440 

Figures 12 shows the snapshots of displacement fields at 1000ms. The figure clearly shows the scattered P- and S-waves by 441 
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the discrete distributed large-scale fractures. The results with such a complex model clearly verify the numerical 442 

implementation and the code. We also calculate the seismograms of the displacement shown in Figure 13. The seismograms 443 

obtained by our proposed modeling scheme present the scattered seismic waves by the discrete fractures. 444 

7. Conclusions 445 

In this work, we have developed a numerical modeling scheme including FPD effects for discrete distributed large-scale 446 

fractures embedded in fluid saturated porous rock. To capture the FPD effects between the fractures and background, the 447 

fractures are represented as Barbosa’s VLSM with complex-valued and frequency-dependent fracture compliances. Using 448 

Coates and Schoenberg’s local effective medium theory and Barbosa’s VLSM, we derive the effective anisotropic viscoelastic 449 

compliances in each spatial discretized cell by superimposing the compliances of the background and the fractures. The local 450 

effective governing equations of numerical cells are expressed by the derived effective compliances and discretized by mixed-451 

grid stencil FDFD. The proposed modeling scheme can be used to study the impact of mechanical and hydraulic of fracture 452 

properties on seismic scattering. 453 

The numerical results of the single horizontal fracture model with a P-point source valid that the proposed VLSM-based 454 

modeling can include the FPD effects and thus accurately estimate the scattered wave of the horizontal fracture. In contrast, 455 

the LFLSM-based modeling overestimates the scattered wave and the HFLSM-based modeling underestimates the scattered 456 

wave. The numerical results with an S-point source show that the scattered waves off a single horizontal fracture is less 457 

sensitive to FDP effects. Due to the differences in fracture orientation, the results of the conjugate fractured reservoir model 458 

are quite different from those of the single horizontal fracture model. For both P- and S-point sources, the amplitudes of the 459 

scattered waves from the top of the fractured reservoir are affected by the fluid stiffening effects due to the FPD effects. The 460 

scattered waves from the bottom of the fractured reservoir are also attenuated and dispersed by the FPD effects in addition to 461 

the fluid stiffening effects and the reflected waves can retain the relevant attenuation and dispersion information. The results 462 

of the modified Marmousi model clearly show the scattered P- and S-waves by the discrete distributed large-scale fractures 463 

and verify the proposed numerical modeling scheme. The proposed numerical modeling scheme is expected not only to 464 

improve the estimations of seismic wave scattering from discrete distributed large-scale fractures but can also to improve 465 

migration quality and the estimation of fracture mechanical characteristics in inversion. 466 

Appendix A: The coefficients related to spatial derivative operators  467 

We define coefficient vectors 𝐓𝑘(𝑘 = 1,2,3,4) and the derivative operate vector 𝐃(𝑐) as 468 

𝐓1 =
1

𝜉𝑥𝜉𝑥
[1 0 0 0], 𝐓2 =

1

𝜉𝑥𝜉𝑧
[0 1 0 0], 𝐓3 =

1

𝜉𝑥𝜉𝑧
[0 0 1 0], 𝐓4 =

1

𝜉𝑧𝜉𝑧
[0 0 0 1],   (A-1) 469 

𝐃(𝑐) = [𝜕𝑥(𝑐𝜕𝑥) 𝜕𝑥(𝑐𝜕𝑧) 𝜕𝑧(𝑐𝜕𝑥) 𝜕𝑧(𝑐𝜕𝑧)],              (A-2) 470 
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where 𝜉𝑥 and 𝜉𝑧 are the PML damping function, 𝑐 represents effective stiffness. Then, the expression of 𝐴𝑐, 𝐵𝑐, 𝐶𝑐, 𝐷𝑐 are 471 

written in matrix form: 472 

[

𝐴𝑐

𝐵𝑐

𝐶𝑐

𝐷𝑐

] =

[
 
 
 
𝐃(𝑐11) 𝐃(𝑐15)

𝐃(𝑐15) 𝐃(𝑐55)
𝐃(𝑐15) 𝐃(𝑐55)

𝐃(𝑐13) 𝐃(𝑐35)

𝐃(𝑐15) 𝐃(𝑐13)

𝐃(𝑐55) 𝐃(𝑐35)
𝐃(𝑐55) 𝐃(𝑐35)

𝐃(𝑐35) 𝐃(𝑐33)]
 
 
 

[

𝐓1

𝐓2

𝐓3

𝐓4

].             (A-3) 473 

We formulate 𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 𝐷𝑟  in a similar way by defining the coefficient vectors 𝐓𝑘
′(𝑘 = 1,2,3,4) and 𝐃′(𝑐) as 474 

𝐓1
′ =

1

2𝜉𝑥𝜉𝑥
[1 1 1 1]𝑇, 𝐓2

′ =
1

2𝜉𝑥𝜉𝑧
[−1 1 −1 1]𝑇, 475 

𝐓3
′ =

1

2𝜉𝑥𝜉𝑧
[−1 −1 1 1]𝑇, 𝐓4

′ =
1

2𝜉𝑧𝜉𝑧
[1 −1 −1 1]𝑇,           (A-4) 476 

𝐃′(𝑐) = [𝜕𝑥′(𝑐𝜕𝑥′) 𝜕𝑥′(𝑐𝜕𝑧′) 𝜕𝑧′(𝑐𝜕𝑥′) 𝜕𝑧′(𝑐𝜕𝑧′)].            (A-5) 477 

The expression of 𝐴𝑟, 𝐵𝑟 , 𝐶𝑟, 𝐷𝑟 are written as 478 

[

𝐴𝑟

𝐵𝑟

𝐶𝑟

𝐷𝑟

] =

[
 
 
 
𝐃′(𝑐11) 𝐃′(𝑐15)

𝐃′(𝑐15) 𝐃′(𝑐55)
𝐃′(𝑐15) 𝐃′(𝑐55)

𝐃′(𝑐13) 𝐃′(𝑐35)

𝐃′(𝑐15) 𝐃′(𝑐13)

𝐃′(𝑐55) 𝐃′(𝑐35)
𝐃′(𝑐55) 𝐃′(𝑐35)

𝐃′(𝑐35) 𝐃′(𝑐33)]
 
 
 

[
 
 
 
𝐓1

′

𝐓2
′

𝐓3
′

𝐓4
′]
 
 
 

.             (A-6) 479 

Appendix B: Parsimonious staggered-grid stencil 480 

The nine coefficients of the CS stencil for the submatrix 𝐀𝑐  of Eq. (36): 481 

𝐴𝑐 i+1,j =
𝑐
11 i+

1
2
,j

△2𝜉𝑥 i𝜉𝑥 i+
1
2

, 𝐴𝑐 i−1,j =
𝑐
11 i−

1
2
,j

△2𝜉𝑥 i𝜉𝑥 i−
1
2

, 𝐴𝑐 i,j+1 =
𝑐
55 i,j+

1
2

△2𝜉𝑧 j𝜉𝑧 j+
1
2

, 𝐴𝑐 i,j−1 =
𝑐
55 i,j−

1
2

△2𝜉𝑧 j𝜉𝑧 j−
1
2

, 482 

𝐴𝑐 i,j = −
𝑐
11 i+

1
2,j

△2𝜉𝑥 i𝜉𝑥 i+
1
2

−
𝑐
11 i−

1
2,j

△2𝜉𝑥 i𝜉𝑥 i−
1
2

−
𝑐
55 i,j+

1
2

△2𝜉𝑧 i𝜉𝑧 j+
1
2

−
𝑐
55 i,j−

1
2

△2𝜉𝑧 i𝜉𝑧 j−
1
2

, 𝐴𝑐 i+1,j+1 =
𝑐15 i+1,j+𝑐15 i,j+1

4△2𝜉𝑥 i𝜉𝑧 j
, 483 

𝐴𝑐 i+1,j−1 = −
𝑐15 i+1,j+𝑐15 i,j−1

4△2𝜉𝑥 i𝜉𝑧 j
, 𝐴𝑐 i−1,j+1 = −

𝑐15 i−1,j+𝑐15 i,j+1

4△2𝜉𝑥 i𝜉𝑧 j
, 𝐴𝑐 i−1,j−1 =

𝑐15 i−1,j+𝑐15 i,j−1

4△2𝜉𝑥 i𝜉𝑧 j
.       (B-1) 484 

The nine coefficients of the RS stencil for the submatrix 𝐀𝑟  of Eq. (36): 485 

𝐴𝑟 i+1,j =
𝑐
11 i+

1
2,j−

1
2
−𝑐

55 i+
1
2,j−

1
2

4△2𝜉𝑥 i𝜉𝑧 j−
1
2

+
𝑐
11 i+

1
2,j+

1
2
−𝑐

55 i+
1
2,j+

1
2

4△2𝜉𝑧 j𝜉𝑥 i+
1
2

, 𝐴𝑟 i−1,j =
𝑐
11 i−

1
2,j+

1
2
−𝑐

55 i−
1
2,j+

1
2

4△2𝜉𝑥 i𝜉𝑧 j+
1
2

+
𝑐
11 i−

1
2,j−

1
2
−𝑐

55 i−
1
2,j−

1
2

4△2𝜉𝑧 j𝜉𝑥 i−
1
2

, 486 

𝐴𝑟 i,j+1 =
𝑐
55 i−

1
2,j+

1
2
−𝑐

11 i−
1
2,j+

1
2

4△2𝜉𝑥 i𝜉𝑧 j+
1
2

+
𝑐
55 𝑖+

1
2,𝑗+

1
2
−𝑐

11 i+
1
2,j+

1
2

4△2𝜉𝑧 j𝜉𝑥 i+
1
2

, 𝐴𝑟 i,j−1 =
𝑐
55 𝑖+

1
2,𝑗−

1
2
−𝑐

11 i+
1
2,j−

1
2

4△2𝜉𝑥 i𝜉𝑧 j−
1
2

+
𝑐
55 i−

1
2,j−

1
2
−𝑐

11 i−
1
2,j−

1
2

4△2𝜉𝑧 j𝜉𝑥 i−
1
2

, 487 

𝐴𝑟 i,j = −
𝑐
11 i+

1
2,j−

1
2
−2𝑐

15 i+
1
2,j−

1
2
+𝑐

55 i+
1
2,j−

1
2

4△2𝜉𝑥 i𝜉𝑥 i+
1
2

−
𝑐
11 i−

1
2,j+

1
2
−2𝑐

15 i−
1
2,j+

1
2
+𝑐

55 i−
1
2,j+

1
2

4△2𝜉𝑥 i𝜉𝑥 i−
1
2

−
𝑐
11 i+

1
2,j+

1
2
+2𝑐

15 i+
1
2,j+

1
2
+𝑐

55 i+
1
2,j+

1
2

4△2𝜉𝑧 j𝜉𝑧 j+
1
2

−
𝑐
11 i−

1
2,j−

1
2
+2𝑐

15 i−
1
2,j−

1
2
+𝑐

55 i−
1
2,j−

1
2

4△2𝜉𝑧 j𝜉𝑧 j−
1
2

, 488 

𝐴𝑟 i+1,j+1 =
𝑐
11 i+

1
2,j+

1
2
+2𝑐

15 i+
1
2,j+

1
2
+𝑐

55 i+
1
2,j+

1
2

4△2𝜉𝑧 j𝜉𝑧 j+
1
2

,  𝐴𝑟 i+1,j−1 =
𝑐
11 i+

1
2,j−

1
2
−2𝑐

15 i+
1
2,j−

1
2
+𝑐

55 i+
1
2,j−

1
2

4△2𝜉𝑥 i𝜉𝑥 i+
1
2

, 489 

𝐴𝑟 i−1,j+1 =
𝑐
11 i−

1
2,j+

1
2
−2𝑐

15 i−
1
2,j+

1
2
+𝑐

55 i−
1
2,j+

1
2

4△2𝜉𝑥 i𝜉𝑥 i−
1
2

,  𝐴𝑟 i−1,j−1 =
𝑐
11 i−

1
2,j−

1
2
+2𝑐

15 i−
1
2,j−

1
2
+𝑐

55 i−
1
2,j−

1
2

4△2𝜉𝑧 j𝜉𝑧 j−
1
2

.          (B-2) 490 

The coefficients of the submatrices 𝐁𝑐, 𝐂𝑐, 𝐃𝑐 and 𝐁𝑟 , 𝐂𝑟, 𝐃𝑟 can be inferred easily from those of submatrix 𝐀𝑐  and 491 

𝐀𝑟 , respectively. 492 
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